پودر نقره دارای خصوصیات فیزیکی، شیمیایی و نوری بی نظیری است که در حال حاضر برای کاربردهای بیولوژیکی بسیار متنوعی مورد استفاده قرار می گیرد. کاربرد پودر نقره به عنوان یک ماده ضد میکروبی منجر به تولید صدها محصول شده است. به علاوه، پودر نقره دارای یک رنگ نوری است که تابعی از اندازه و شکل آن است. از اتصال قوی پودر نقره به طول موجهای خاص نور تابشی می توان برای تولید مولکول های گزارشگر فوق سبک، جاذب های حرارتی بسیار کارآمد و “آنتن هایی” در مقیاس نانو استفاده کرد که می تواند قدرت میدان الکترومغناطیسی محلی را تقویت کند. در این مقاله تلاش داریم تا در مورد کاربرد بیولوژیکی پودر نقره، در رنگرزی سلول و تشخیص بیماری ژنی اطلاعاتی را در اختیار تان قرار دهیم. در کل می توان گفت که شرایط واکنش طی سنتز نانوذرات نقره را می توان برای تولید پودر نقره کلوئیدی با انواع مورفولوژی ها از جمله کروی، منشورهای مثلثی، صفحات نانو، مکعب ها، سیم ها و نانومیله ها تنظیم کرد. برای استفاده در کاربردهای بیولوژیکی، شیمی سطح، مورفولوژی و خصوصیات نوری، پودر نقره باید به دقت کنترل شود تا عملکرد مطلوب در محیط هدف بدست آید. با تیم شیمی مارکت سپاهان همراه باشید تا در مورد پودر نقره بیشتر بدانید.
در بسیاری از کاربردهای بیولوژیکی ، تنظیم پایداری کلوئیدی در بافرها یا محیط های مختلف ، یا تغییر اتصال ذرات یا جذب ذرات از طریق فعل و انفعالات سطحی امری مطلوب است. شیمی سطح ذرات (به عنوان مثال، قدرت اتصال، گروه های عملکردی و اندازه عوامل پوششی) می تواند متنوع باشد تا سطح کنترل بیشتری بر رفتار ذرات فراهم کند. در محیط های آبی، بسیاری از ذرات نانو از طریق افزودن گونه های باردار در سطح ذرات به صورت الکترواستاتیکی تثبیت می شوند. نوع و تراکم بارها را میتوان با اندازه گیری پتانسیل zeta کلوئید تعیین کرد. به طور معمول، پتانسیل زتا ذرات نانو نقره به دلیل مولکول های متصل به سطح مانند سیترات منفی است. با قرار دادن ذرات در برابر لیگاندهای هماهنگتر (اغلب حاوی عملکرد تیول یا آمین)، عوامل مجزاکننده جدید می توانند به سطح متصل شوند و عملکرد شیمیایی و پتانسیل زتای ذرات را تغییر دهند. جالب است بدانید کهپودر نقره به عنوان یک کاتالیزور به واقع عالی عمل می کند و در بسیاری موارد توانسته است راهگشای پژوهشگران در راه انجام آزمایش ها باشد.
یکی از تکنیک های طیف سنجی که از میدان های الکترومغناطیسی افزایش یافته سود می برد طیف سنجی Raman است، جایی که مولکول ها را می توان با حالت های ارتعاشی منحصر به فرد آنها شناسایی کرد. در حالی که پراکندگی فوتولون های رامان به طور طبیعی از مولکول ها ضعیف است و برای به دست آوردن یک طیف رامان به زمان اندازه گیری طولانی نیاز است، بینابنمایی ارتقا یافته سطحی رامان (SERS) از مولکول های نزدیک سطح نانوذرات فلز پلاسمونیک، سیگنال های رامان بسیار خوبی را ارائه می دهد. اثر SERS می تواند پراکندگی رامان مولکولهای متصل شده را تا ۱۴ مرتبه افزایش دهد و این امکان را برای تشخیص حتی تک مولکول ها فراهم کند. این افزایش توسط شدت میدان الکتریکی ایجاد شده در مکانهایی برروی سطح نانوذرات هدایت می شود و بنابراین به هندسه ذرات نانو، ویژگیهای سطح و موقعیت خاص مولکول بسیار وابسته است. پودر نقره که SERS را از مولکول های وابسته به نمایش می گذارد (برچسب های نانو SERS) به عنوان برچسب در طیف وسیعی از کاربردهای زیست پزشکی و پلتفرم ها از جمله آزمایش های ایمنی سنجی، تشخیص توالی اسید نوکلئیک، تصویربرداری سلولی آزمایشگاهی و جریان سنجش سلولی استفاده میشود. کاربرد های پودر نقره بسیار متنوع است مانند کاربرد پودر نقره در داروسازی و دندانپزشکی که در جای خود می توان به این موضوع اشاره کرد.
اتصال یک مولکول رنگ به یک نانوذره نقره معمولاً منجر به فرو نشاندن انتشار ناشی از انتقال انرژی بین حالت برانگیخته فلوروفور و حالات الکترونیکی فلز می شود. در این حالت، طیف رامان مولکول به دلیل وجود میدان الکترومغناطیسی زیاد در سطح ذره، به شدت افزایش می یابد. فاصله کمی فلوروفور از سطح ذرات از خاموش شدن فلورسانس جلوگیری کرده و به دلیل وجود میدان الکترومغناطیسی محلی بالا، منجر به افزایش زیاد برون پاشی نوری از مولکول می شود.
میزان آزاد سازی یون نقره از نانوذرات نقره به عوامل مختلفی از جمله اندازه ذرات نانو، شکل، عامل پوشاننده، حالت تجمع و محیط بستگی دارد. کوچکترین اندازه ذرات به دلیل انرژی سطحی بالای سطوح نانوذره بسیار منحنی یا کشیده سریعترین سرعت انتشار یون را دارند. شکل همچنین به میزان انتشار یون کمک می کند.
بدون دیدگاه